Elevation was preserved with the new theatre design. Construction shoring, allowing installation of the new structure.

The four walls of the auditorium serve as the primary lateral force resisting system for the entire structure, with one short, stout concrete shear wall controlling torsion at the entrance. By careful positioning, this shear wall blends in as an impressive architectural feature, thus preserving the wide open spaces of the ground floor lobby and second floor conference room.

Coordination between structure and architecture was nowhere more critical than at the perimeter of the roof and second floor. This coordination allowed use of deep, long span members and yet provide a thin "picture frame" feel.

Design Development:
From the moment the design team was finalized, the challenges started. The major issues needing resolution included how to best incorporate the existing theatre’s subterranean "batthtub" into the new theatre footprint, constructability conflicts with the adjacent parking garage pile foundations, and limiting the construction budget while maintaining the look and feel of a major landmark destination.

Risha Engineering collaborated closely with MATT Construction and Gensler during this initial period to present a wide variety of schemes to the Academy’s board for consideration. These schemes investigated the delicate balancing act between construction costs and architectural design in order to provide the Television Academy information needed to make tough decisions.

After careful scrutiny, the team chose the final structural systems – steel framing, with concrete filled metal decks and concrete shear walls, and conventional foundations.

Entrance Schemes Investigated:

Option #1 (right top) – Columns at 30 feet maximum spacing at the entrance perimeter walls, with 12 feet cantilevers at level 2. This option included no columns.

Option #2 (right center) – Two main columns at 80 feet spacing with TSGs spanning between large TSGs cantilevered over the columns.

Option #3 (right bottom) – Two deep steel trusses cantilevering 60 feet from the auditorium structure, supporting level 2 and the low roof – this option included no columns.

A steel moment frame steel braced shear wall were investigated as secondary lateral systems to accommodate torsional considerations – a thin concrete shear wall was selected.